thinclient

وبلاگی در حوزه تین کلاینت

thinclient

وبلاگی در حوزه تین کلاینت

مهندس هوش مصنوعی چه وظایفی دارد؟

مهندس هوش مصنوعی یکی از نقش‌های جدید در حوزه فناوری اطلاعات است. مهندسان هوش مصنوعی افرادی هستند که از هوش مصنوعی و تکنیک‌های یادگیری ماشین برای توسعه برنامه‌ها و سیستم‌هایی استفاده می‌کنند که می‌توانند به سازمان‌ها در افزایش کارایی، کاهش هزینه‌ها، افزایش سود و تصمیم‌ گیری بهتر در کسب‌ و کار کمک کنند. یک متخصص هوش مصنوعی بر توسعه ابزارها، سیستم‌ها و فرآیندهایی تمرکز دارد که هوش مصنوعی را قادر می‌سازد در دنیای واقعی به کار گرفته شود. هر برنامه‌ای که در آن ماشین‌ها از عملکردهای انسانی مانند: حل مسائل و یادگیری تقلید می‌کنند، می‌توان هوش مصنوعی در نظر گرفت.
مهندس هوش مصنوعی کیست؟
مهندس هوش مصنوعی یک متخصص فناوری اطلاعات است که ماموریت آن‌ها توسعه الگوریتم‌های هوشمندی است که قادر به یادگیری، تجزیه و تحلیل و پیش‌بینی رویدادهای آینده می‌باشند. مهندسان هوش مصنوعی یک محقق هستند که عملکرد مغز انسان را تجزیه و تحلیل می‌کنند تا برنامه‌های رایانه‌ای را با همان توانایی‌های شناختی انسان بسازند. مهندسان هوش مصنوعی باید در زمینه‌های مختلفی مانند: یادگیری ماشین یا یادگیری عمیق که برگرفته از هوش مصنوعی است، تخصص داشته باشند. یادگیری ماشینی مبتنی بر الگوریتم‌ها و درخت‌های تصمیم گیری (یکی از پرکاربردترین الگوریتم‌ها در بین الگوریتم‌های داده کاوی می‌باشد) است، در حالی که یادگیری عمیق مبتنی بر شبکه‌های عصبی است.
مهندس هوش مصنوعی موظف به انجام چه کارهایی است؟
مهندسی هوش مصنوعی از جمله نقش‌ها و مشاغل جدید حوزه فناوری اطلاعات و علوم رایانه‌ای است. که با استفاده از الگوریتم‌های یادگیری ماشین و یادگیری عمیق، مدل‌های هوش مصنوعی را برای ترسیم چشم‌اندازهای کسب‌ و‌ کارها ایجاد می‌کنند که می‌تواند برای تصمیم‌گیری‌های تجاری که کل سازمان را تحت تاثیر قرار می‌دهد استفاده شود. این مهندسان بسته به این ‌که سازمان‌ها چه اهدافی را دنبال می‌کنند هوش‌های مصنوعی قوی یا ضعیف ایجاد می‌کنند. مهندسان هوش مصنوعی درک کاملی از برنامه‌ نویسی،مهندسی نرم‌افزار  و علم داده‌ها دارند. آن‌ها از ابزارها و تکنیک‌های مختلفی استفاده می‌کنند تا بتوانند داده‌ها را پردازش و سیستم‌های هوش مصنوعی را توسعه داده و نگهداری کنند.
مسئولیت‌های مهندس هوش مصنوعی
مهندسان هوش مصنوعی نقش مهمی در سازمان‌هایی دارند که از هوش مصنوعی استفاده می‌نمایند. آن‌ها استراتژی هوش مصنوعی را ترسیم  و مشکلاتی را که باید با هوش مصنوعی حل شوند را تعریف می‌کنند. آن‌ها مسئول ایجاد زیرساخت و توسعه هوش مصنوعی و سپس پیاده سازی آن‌ها هستند. در اینجا برخی از وظایف و مسئولیت‌های خاص یک مهندس هوش مصنوعی آورده شده است:
زیر ساخت توسعه هوش مصنوعی را ایجاد و مدیریت می‌کنند.
انجام تجزیه و تحلیل آماری و تفسیر نتایج برای هدایت و بهینه سازی فرآیند تصمیم گیری سازمان
خودکارسازی زیرساخت‌هایی که گروه علم داده استفاده می‌کنند.
توانایی تعامل و هماهنگی با دیگران برای پیشبرد امور.
تنظیم و مدیریت زیرساخت‌های مورد نیاز برای اجرای مدل‌های هوشمند.
ایجاد هماهنگی میان دانشمندان داده و تحلیل گران کسب‌‌‌وکار
تبدیل مدل‌‌های یادگیری ماشین به API ‌‌هایی که قابل دسترسی توسط بقیه اپلیکیشن‌‌ها نیز باشد.
تست و استقرار مدل‌‌ها
توسعه حداقل محصول مناسب بر اساس یادگیری ماشین
به کارگیری هوش مصنوعی برای تجهیز سازمان با توانمندی‌‌های نوین
مهارت‌های مورد نیاز برای یک مهندس هوش مصنوعی
در ابتدا یک مهندس هوش مصنوعی به عنوان پیش نیاز باید به ریاضیات مسلط باشد و اطلاعات کافی درباره آمار، احتمال، منطق، حساب و الگویتم‌ها داشته باشد. برای مهندسان هوش مصنوعی مدرک فیزیک مهندسی یا روباتیک هم مورد قبول است. یکی دیگر از مسیرهای تحصیلی ممکن برای این شغل، کارشناسی در علوم رایانه است. که در مقطع کارشناسی ارشد در رشته مهندسی کامپیوتر و برای تخصص بیشتر در رشته‌های مرتبط باهوش مصنوعی در سطح دکترا ادامه میابد.
مهارت‌های برنامه نویسی
مهارت در برنامه نویسی یکی از مهارت‌های مهم و بیسیک است.

نیازها و پیش نیازهای علم داده و استفاده کاربردی از این چرخه‌ی حیاتی

علم داده یک حوزه بین رشته‌ای است که از روش‌های علمی، فرآیندها و الگوریتم‌ها برای استخراج دانش و بینش از داده‌های ساختار یافته و بدون ساختار استفاده می‌کند. Data Science به داده کاوی، یادگیری ماشین و کلان داده مرتبط است. امروزه با توجه به حجم انبوه داده‌ای که تولید می‌شود، علم داده بخش ضروری بسیاری از صنایع می‌باشد که یکی از موضوعات داغ در مباحث فناوری اطلاعات بوده که محبوبیت آن در طی سال‌ها افزایش یافته است. امروزه شرکت‌ها شروع به پیاده سازی تکنیک‌های Data Science برای رشد کسب و کار خود و افزایش رضایت مشتری کرده‌اند.    
Data Science حوزه مطالعاتی است که تخصص‌هایی از جمله برنامه نویسی، دانش ریاضیات و آمار را برای استخراج بینش معنادار از داده‌ها ترکیب می‌کند. متخصصان علوم داده الگوریتم‌های یادگیری ماشینی را روی اعداد، متن، تصاویر، ویدئو، صدا و موارد دیگر برای تولید سیستم‌های هوش مصنوعی (AI) و انجام کارهایی که معمولا به هوش انسانی نیاز دارند، اعمال می‌کنند. Data Science به نوبه خود، بینشی ایجاد می‌کند که تحلیلگران و کاربران تجاری می‌توانند آن را به ارزش تجاری ملموس تبدیل کنند.
علم داده (Data Science) چیست؟
Data Science با حجم وسیعی از داده‌ها با استفاده از ابزارها و تکنیک‌های مدرن برای یافتن الگوهای کاربردی، استخراج اطلاعات معنادار و تصمیم گیری‌های تجاری سر و کار دارد. این تکنولوژی از الگوریتم‌های پیچیده یادگیری ماشین برای ساخت مدل‌های پیش بینی شده استفاده می‌کند. داده‌های مورد استفاده برای تجزیه و تحلیل می‌توانند از منابع مختلف و در قالب‌های مختلف ارائه شوند. Data Science یک نیروی محرکه بین تجربیات بسیار تخصصی کاربران است که از طریق شخصی سازی و سفارشی سازی ایجاد می‌شود. این تجزیه و تحلیل می‌تواند برای ایجاد حس دیده شدن و درک مشتریان توسط یک شرکت مورد استفاده قرار گیرد.
علم داده چگونه کار می‌کند؟
Data Science شامل چندین رشته برای ایجاد نگاهی جامع، کامل و تصفیه شده به داده‌‎های خام است. دانشمندان داده باید در همه چیز از مهندسی داده، ریاضی، آمار، محاسبات پیشرفته گرفته تا تجسم ماهر باشند که بتوانند به طور موثر توده‌های درهم از اطلاعات را غربال کنند. دانشمندان داده اغلب برای ایجاد مدل‌ها با استفاده از الگوریتم‌ها و تکنیک‌های دیگر، به ‌شدت به هوش مصنوعی، به ‌ویژه زیر شاخه‌های یادگیری ماشینی و یادگیری عمیق، تکیه می‌کنند.
چرخه حیات علم داده 
 چرخه حیات شامل پنج مرحله مجزا است که هر کدام وظایف خاص خود را دارند:
1. ضبط: این مراحل شامل جمع آوری داده‌های ساختار یافته و بدون ساختار است. مانند: اکتساب داده، دریافت سیگنال و استخراج داده. 
2. نگهداری: این مرحله شامل گرفتن داده‌های خام و قرار دادن آن‌ها به شکلی است که قابل استفاده باشد مانند: انبار داده، پاکسازی داده، مرحله بندی داده، پردازش داده و معماری داده.
3. فرآیند: دانشمندان داده، اطلاعات آماده‌ شده را دریافت می‌کنند و الگوهای آن را بررسی می‌کنند تا تعیین کنند که چقدر در تحلیل پیش‌ بینی مفید خواهد بود. داده کاوی، طبقه بندی، مدل سازی داده‌ها
4. تجزیه و تحلیل: این مرحله شامل انجام تحلیل‌های مختلف بر روی داده‌ها می‌باشد. مانند: رگرسیون، متن کاوی، تحلیل کیفی. 
5. ارتباط: در قسمت نهایی، تحلیلگران تجزیه و تحلیل‌ها را به شکل‌های قابل خواندن مانند نمودارها آماده می‌کنند. 
چه کسانی بر Data Science نظارت دارند؟
مدیران کسب و کار
مدیران کسب و کار افرادی هستند که وظیفه نظارت بر روش آموزش علوم داده را بر عهده دارند. مسئولیت اصلی آن‌ها همکاری با تیم Data Science برای مشخص کردن مشکل و ایجاد یک روش تحلیلی است. یک دانشمند داده ممکن است بر بخش بازاریابی، مالی یا فروش نظارت داشته باشد و به مدیر اجرایی مسئول بخش گزارش دهد. هدف آن‌ها اطمینان از تکمیل به موقع پروژه‌ها با همکاری نزدیک با دانشمندان داده و مدیران فناوری اطلاعات است.
مدیران فناوری اطلاعات
در رتبه دوم مدیران فناوری اطلاعات هستند. اگر عضوی برای مدت طولانی در سازمان بوده باشد، بدون شک مسئولیت‌های او بیش از سایرین مهم خواهد بود. آن‌ها در درجه اول مسئول توسعه زیرساخت‌ها و معماری برای فعال کردن فعالیت‌های علم داده هستند. تیم‌های Data Science نظارت می‌شوند و منابع مورد نیاز تیم تامین می‌شود تا اطمینان حاصل شود که کارآمد و ایمن عمل می‌کنند. آن‌ها همچنین ممکن است مسئول ایجاد و نگهداری محیط‌های IT برای تیم‌های تحلیل داده باشند.
 مدیران علوم داده
مدیران علوم داده بخش نهایی کار را تشکیل می‌دهند. آن‌ها در درجه اول بر روند کاری همه اعضای تیم Data Science نظارت دارند. که همچنین فعالیت‌های روزانه تیم علم داده را مدیریت و پیگیری می‌کنند. مدیران علوم داده تیم سازانی هستند که می‌توانند برنامه ریزی و نظارت پروژه را با رشد تیم ترکیب کنند.
پیش نیازهای علم داده
در اینجا برخی از مفاهیم فنی وجود دارد که باید قبل از شروع یادگیری Data Science در مورد آن‌ها بدانید.
1. یادگیری ماشینی
یادگیری ماشینی ستون فقرات Data Science است. دانشمندان داده علاوه بر دانش اولیه آمار، باید درک کاملی از ML داشته باشند.
2. مدل سازی
مدل‌های ریاضی شما را قادر می‌سازد تا محاسبات و پیش‌بینی‌های سریعی را بر اساس آنچه از قبل درباره داده‌ها می‌دانید انجام دهید. مدل ‌سازی نیز بخشی از یادگیری ماشینی است و شامل شناسایی این موضوع است که کدام الگوریتم برای حل یک مسئله معین مناسب‌تر است و چگونه این مدل‌ها را آموزش دهیم.
3. آمار
آمار در هسته Data Science قرار دارد. یک آمار دقیق و درست می‌تواند به شما کمک کند تا داده بیشتری را استخراج کرده و نتایج معنی داره بیشتری کسب کنید.
4. برنامه نویسی
برای اجرای موفقیت آمیز پروژه Data Science به سطحی از برنامه نویسی نیاز است. رایج‌ترین زبان‌های برنامه نویسی پایتون و R هستند  R .و Python  از محبوبیت خاصی برخوردار هستند زیرا یادگیری آن‌ها آسان است و از چندین کتابخانه برای Data Science و ML پشتیبانی می‌کنند.
5. پایگاه‌های داده
یک دانشمند داده توانمند باید بداند که پایگاه‌های داده چگونه کار می‌کنند، چگونه آن‌ها را مدیریت کند و چگونه داده‌ها را از آن‌ها استخراج کند.
مقایسه علم داده و دانشمندان داده 
Data Science به عنوان یک رشته در نظر گرفته می‌شود، در حالی که دانشمندان داده متخصصان آن حوزه هستند. دانشمندان داده لزوما مسئول مستقیم تمام فرآیندهای درگیر در چرخه حیات علم داده نیستند. به عنوان مثال: خطوط لوله داده معمولا توسط مهندسان داده اداره می‌شود اما دانشمند داده ممکن است توصیه‌هایی در مورد نوع داده ارائه دهند. در حالی که دانشمندان داده می‌توانند مدل‌های یادگیری ماشین بسازند، که این تلاش‌ها در سطح بزرگ‌تر به مهارت‌های مهندسی نرم‌ افزار بیشتر و بهینه ‌سازی یک برنامه برای اجرای سریع‌تر نیاز دارد.
علم داده و محاسبات ابری
راه‌حل‌های ذخیره‌ سازی ابری، مانند دریاچه‌های داده و دسترسی به زیر ساخت‌های ذخیره ‌سازی را فراهم می‌کنند که می‌توانند حجم زیادی از داده‌ها را به راحتی دریافت و پردازش کنند. این سیستم‌ها ذخیره ‌سازی و انعطاف ‌پذیری را برای کاربران نهایی فراهم می‌کنند. پلتفرم‌های ابری معمولا برای اشتراک‌های مورد نظر کاربر، مدل‌های قیمت‌ گذاری متفاوتی دارند، تا بتواند به راحتی نیازهای کاربر را برآورده کنند.
 از فناوری‌های open source به طور گسترده در مجموعه ابزارهای Data Science استفاده می‌شود. چندین ارائه ‌دهنده ابر، از جمله IBM Cloud، کیت‌های ابزار از پیش بسته‌ بندی شده‌ای را نیز ارائه می‌کنند. که دانشمندان داده را قادر می‌سازد تا مدل‌هایی را بدون کدنویسی بسازند. و دسترسی بیشتر به نوآوری‌های فناوری و بینش داده داشته باشند.
نتیجه گیری
علم داده مفهومی برای یکسان سازی آمارها، تحلیل داده‌ها، انفورماتیک و روش‌های مرتبط با آن‌ها به منظور درک و تجزیه و تحلیل پدیده‌های واقعی با داده‌ها است. Data Science از تکنیک‌ها و نظریه‌هایی استفاده می‌کند که در بسیاری از زمینه‌ها مانند: ریاضیات، آمار، علوم کامپیوتر، علم اطلاعات استخراج شده‌اند.

یادگیری ماشینی چیست؟

روش‌های جدید در مدل یادگیری ماشینی ، با تمرکز دقیق‌تر بر روی داده‌های بیشتر، منجر به پیش‌بینی‌های قابل اعتمادتر می‌شود.
اگر راننده تاکسی شما از میانبر استفاده کند، ممکن است سریع‌تر به مقصد برسید. اما اگر یک مدل یادگیری ماشینی از میانبر استفاده کند، احتمال شکست خوردن آن افزایش می‌یابد.
چرا که در یادگیری ماشینی ، یک راه حل میانبر، زمانی رخ می‌دهد که مدل به جای یادگیری ماهیت واقعی داده‌ها، به ویژگی ساده یک مجموعه داده برای تصمیم‌گیری تکیه کند.
برای مثال، یک مدل ممکن است یاد بگیرد که تصاویر گاوها را با تمرکز بر روی چمن سبزی که در عکس‌ها ظاهر می‌شود، شناسایی کند، نه اشکال و الگوهای پیچیده‌تر در ماهیت خود گاوها.
یادگیری ماشینی چیست؟
با حذف ویژگی‌های ساده‌ای‌ که تاکنون مدل ماشینی بر روی آن‌ها تمرکز داشته است، محققان تلاش می‌کنند تا یادگیری ماشین را بر روی ویژگی‌های پیچیده‌تری که تا آن موقع در نظر گرفته نشده بود متمرکز کنند. سپس، با درخواست از مدل ماشین لرنینگ برای حل یک کار به دو روش، تمایل به راه‌حل‌های میانبر را کاهش داده و عملکرد مدل را افزایش می‌دهند.
یکی از کاربردهای بالقوه این کار، افزایش اثربخشی مدل‌های یادگیری ماشین است که برای شناسایی بیماری در تصاویر پزشکی استفاده می‌شوند. راه حل‌های میانبر در این زمینه می‌تواند منجر به تشخیص‌های نادرست شود و پیامدهای خطرناکی برای بیماران داشته باشد.
جاشوا رابینسون دانشجوی دکترای آزمایشگاه علوم کامپیوتر و هوش مصنوعی (CSAIL) و نویسنده اصلی مقاله می‌گوید: اگر بتوانیم نحوه عملکرد میانبرها را با جزئیات بیشتر درک کنیم، می‌توانیم حتی فراتر برویم و به برخی از سوالات اساسی اما بسیار کاربردی که برای افراد بسیار مهم هستند پاسخ دهیم.
راه طولانی برای درک میانبرها
محققان مطالعه خود را بر یادگیری متضاد متمرکز کردند، که یک شیوه موثر در خودآموزی ماشین لرنینگ است. یک مدل یادگیری ماشینی خودآموز، بخش‌های مفیدی از داده‌ها را می‌آموزد که به عنوان ورودی برای کارهای مختلف مانند طبقه‌بندی تصویر استفاده می‌شوند. اما اگر مدل از میانبرها استفاده کند و نتواند اطلاعات مهم را بگیرد نتیجه نهایی مطلوب نخواهد بود.
برای مثال، اگر یک مدل خودآموز یادگیری ماشینی، برای طبقه‌بندی تصاویر ذات‌الریه با اشعه ایکس در تعدادی از بیمارستان‌ها آموزش دیده باشد. یاد می‌گیرد که براساس برچسب بیمارستانی که اسکن از آنجا آمده است، پیش‌بینی کند. و در این حالت زمانی که داده‌های یک بیمارستان جدید به آن داده می‌شود، عملکرد خوبی نخواهد داشت.
برای مدل‌های یادگیری متضاد، یک الگوریتم رمزگذار برای تمایز بین جفت ورودی‌های مشابه و جفت ورودی‌های غیرمشابه آموزش داده شده است. این فرآیند داده های غنی و پیچیده مانند تصاویر را به گونه‌ای رمزگذاری می‌کند که مدل یادگیری متضاد بتواند آن را تفسیر کند.
محققان، رمزگذارهای یادگیری متضاد را با مجموعه‌ای از تصاویر آزمایش کردند و دریافتند که در طول این روش آموزشی، آن‌ها طعمه راه‌حل‌های میانبر نیز می‌شوند. رمزگذارها معمولا روی ساده‌ترین ویژگی‌های یک تصویر تمرکز می‌کنند تا تصمیم بگیرند که کدام جفت ورودی مشابه و کدام یک متفاوت هستند. جگلکا می‌گوید در حالت ایده‌آل، رمزگذار باید هنگام تصمیم‌گیری بر روی تمام ویژگی‌های مفید داده‌ها تمرکز کند. بنابراین، تیم محققان، تشخیص تفاوت بین جفت‌های مشابه و غیرمشابه را سخت‌تر کردند.
تفاوت جفت های مشابه و غیرمشابه
او می‌گوید: «اگر کار تمایز بین موارد مشابه و غیرمشابه را سخت‌تر و سخت‌تر کنید، سیستم شما مجبور می‌شود اطلاعات معنی‌دار بیشتری در داده‌ها جست و جو کرده و بیاموزد، زیرا بدون یادگیری نمی‌تواند مساله را حل کند.
اما افزایش این دشواری منجر به یک مبادله شد. رمزگذار در تمرکز بر برخی از ویژگی‌های داده بهتر شد اما در تمرکز بر برخی دیگر بدتر شد. رابینسون می‌گوید که تقریباً به نظر می‌رسید ویژگی‌های ساده‌تر را فراموش کرده است.
برای جلوگیری از این مبادله، محققان از رمزگذار خواستند تا به همان روشی که در ابتدا با استفاده از ویژگی‌های ساده‌تر و همچنین پس از حذف اطلاعاتی که قبلا مدل ماشین لرنینگ آموخته بود، بین جفت‌ها تمایز قائل شود. حل مساله به هر دو صورت به طور همزمان باعث بهبود رمزگذار در همه ویژگی‌ها شد. روش آن‌ها که اصلاح ویژگی ضمنی نامیده می‌شود، نمونه‌ها را به صورت تطبیقی ​​اصلاح می‌کند تا ویژگی‌های ساده‌تری را که رمزگذار برای تمایز بین جفت‌ها استفاده می‌کند حذف کند.
نتیجه گیری
یادگیری ماشینی به ورودی از جانب انسان متکی نیست، که نکته بسیار مهمی‌ست. زیرا مجموعه داده‌های دنیای واقعی می توانند صدها ویژگی مختلف داشته باشند که به روش‌های پیچیده‌ای ترکیب می‌شوند. این موضوع به برخی از بزرگ‌ترین سوالات در مورد سیستم‌های یادگیری عمیق مرتبط است، مانند «چرا آنها شکست می‌خورند؟» و «آیا می‌توانیم از قبل موقعیت‌هایی را پیش بینی کنیم که مدل ماشین لرنینگ در آن شکست می‌خورد؟». هنوز راه زیادی در پیش است!